Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 14(10)2022 09 28.
Article in English | MEDLINE | ID: covidwho-2090352

ABSTRACT

This study characterized the susceptibility and dynamic of porcine deltacoronavirus infection in grower pigs under experimental conditions using a combination of syndromic and laboratory assessments. Seven-week-old conventional pigs (n = 24) were randomly distributed into PDCoV- (n = 12) and mock-inoculated (n = 12) groups. Serum was collected at -7, 0, 3, 7, 10, 14, 17, 21, 28, 35, and 42 days post-inoculation (DPI) to evaluate viremia (RT-qPCR) and antibody response (S1-based ELISA). Viral shedding and potential infectivity were determined using pen-based oral fluids and feces collected every other day between DPI 0 and 42. Pigs showed no clinical signs or viremia throughout the study. Active virus shedding was detected in feces (6-22 DPI) and oral fluids (2-30 DPI), peaking at DPI 10. IgG was first detected at DPI 10, being statistically significant after DPI 14 and increasing thereafter, coinciding with the progressive resolution of the infection. Likewise, a significant increase in proinflammatory IL-12 was detected between DPI 10 and 21 in PDCoV-inoculated pigs, which could enhance innate resistance to PDCoV infection. This study demonstrated that active surveillance based on systematic sampling and laboratory testing combining molecular and serological tools is critical for the accurate detection of subclinical circulation of PDCoV in pigs after weaning.


Subject(s)
Coronavirus Infections , Swine Diseases , Animals , Asymptomatic Infections , Immunoglobulin G , Interleukin-12 , Swine , Viremia/veterinary
2.
Pathogens ; 11(8)2022 Aug 13.
Article in English | MEDLINE | ID: covidwho-1987914

ABSTRACT

Porcine deltacoronavirus (PDCoV), belonging to family Coronaviridae and genus Deltacoronavirus, is a major enteric pathogen in swine. Accurate PDCoV diagnosis relying on laboratory testing and antibody detection is an important approach. This study evaluated the potential of the receptor-binding subunit of the PDCoV spike protein (S1), generated using a mammalian expression system, for specific antibody detection via indirect enzyme-linked immunosorbent assay (ELISA). Serum samples were collected at day post-inoculation (DPI) -7 to 42, from pigs (n = 83) experimentally inoculated with different porcine coronaviruses (PorCoV). The diagnostic sensitivity of the PDCoV S1-based ELISA was evaluated using serum samples (n = 72) from PDCoV-inoculated animals. The diagnostic specificity and potential cross-reactivity of the assay was evaluated on PorCoV-negative samples (n = 345) and samples collected from pigs experimentally inoculated with other PorCoVs (n = 472). The overall diagnostic performance, time of detection, and detection rate over time varied across different S/P cut-offs, estimated by Receiver Operating Characteristic (ROC) curve analysis. The higher detection rate in the PDCoV group was observed after DPI 21. An S/P cut-off of 0.25 provided 100% specificity with no serological cross-reactivity against other PorCoV. These results support the use of S1 protein-based ELISA for accurate detection of PDCoV infections, transference of maternal antibodies, or active surveillance.

3.
Cell Death Discov ; 7(1): 383, 2021 Dec 10.
Article in English | MEDLINE | ID: covidwho-1565714

ABSTRACT

The ability of SARS-CoV to infect different species, including humans, dogs, cats, minks, ferrets, hamsters, tigers, and deer, pose a continuous threat to human and animal health. Pigs, though closely related to humans, seem to be less susceptible to SARS-CoV-2. Former in vivo studies failed to demonstrate clinical signs and transmission between pigs, while later attempts using a higher infectious dose reported viral shedding and seroconversion. This study investigated species-specific cell susceptibility, virus dose-dependent infectivity, and infection kinetics, using primary human (HRECs) and porcine (PRECs) respiratory epithelial cells. Despite higher ACE2 expression in HRECs compared to PRECs, SARS-CoV-2 infected, and replicated in both PRECs and HRECs in a dose-dependent manner. Cytopathic effect was particularly more evident in PRECs than HRECs, showing the hallmark morphological signs of apoptosis. Further analysis confirmed an early and enhanced apoptotic mechanism driven through caspase 3/7 activation, limiting SARS-CoV-2 propagation in PRECs compared to HRECs. Our findings shed light on a possible mechanism of resistance of pigs to SARS-CoV-2 infection, and it may hold therapeutic value for the treatment of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL